CRYPTO NEWS
515
Consider a bilinear pairing $e: G_1 times G_2 rightarrow G_T$. Let’s assume, $G_1 = G_2 = G_T = (mathbb{Z}_n,+)$, i.e. additive group of integer modulo $n$ and $e(x,y) = xy$ mod $n$. Isn’t it an example of bilinear map? $G_1 = G_2 = G_T = (mathbb{Z}_n,ast)$, i.e. multiplicative group of integer modulo $n$ and $e(x,y)::Listen
Consider a bilinear pairing $e: G_1 times G_2 rightarrow G_T$. Let’s assume, $G_1 = G_2 = G_T = (mathbb{Z}_n,+)$, i.e. additive group of integer modulo $n$ and $e(x,y) = xy$ mod $n$. Isn’t it an example of bilinear map?
$G_1 = G_2 = G_T = (mathbb{Z}_n,ast)$, i.e. multiplicative group of integer modulo $n$ and $e(x,y) = y^x$ mod $n$, is it still a bilinear map?
Can there be other bilinear map defined over $mathbb{Z}_n$?
EDIT:
Actually all my question were to understand Groth-Sahai proof system. Here, they have recast the general equation to fit the form of a quadratic equation. (See teh highlighted part below). But, how can they remark that all maps with $f(x,y) = xy$ mod $n$ will satisfy properties of bilinear pairing?
Showing 1–8 of 312 results
-
Electroneum ETN Unisex Twill Crypto Hat
USD$25.30 Select options -
Pearl Crypto Coin Unisex Trucker Hat
USD$28.08 Select options -
Insight Chain INB Crypto Coin Unisex Trucker Hat
USD$28.08 Select options -
DASH Unisex Twill Crypto Hat
USD$25.30 Select options -
Naga NGC Crypto Coin Unisex Trucker Hat
USD$28.08 Select options -
Paypex PAYX Crypto Coin Unisex Trucker Hat
USD$28.08 Select options -
Poet POE Crypto Coin Unisex Trucker Hat
USD$28.08 Select options -
Cardano ADA Unisex Twill Crypto Hat
USD$25.30 Select options
